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Abstract

Recent developments in modern computational accelerators like Graphics Processing Units (GPUs) and coprocessors
provide great opportunities for making scientific applications run faster than ever before. However, efficient parallelization
of scientific code using new programming tools like CUDA requires a high level of expertise that is not available to many
scientists. This, plus the fact that parallelized code is usually not portable to different architectures, creates major challenges
for exploiting the full capabilities of modern computational accelerators. In this work, we sought to overcome these
challenges by studying how to achieve both automated parallelization using OpenACC and enhanced portability using
OpenCL. We applied our parallelization schemes using GPUs as well as Intel Many Integrated Core (MIC) coprocessor to
reduce the run time of wave propagation simulations. We used a well-established 2D cardiac action potential model as a
specific case-study. To the best of our knowledge, we are the first to study auto-parallelization of 2D cardiac wave
propagation simulations using OpenACC. Our results identify several approaches that provide substantial speedups. The
OpenACC-generated GPU code achieved more than 150| speedup above the sequential implementation and required the
addition of only a few OpenACC pragmas to the code. An OpenCL implementation provided speedups on GPUs of at least
200| faster than the sequential implementation and 30| faster than a parallelized OpenMP implementation. An
implementation of OpenMP on Intel MIC coprocessor provided speedups of 120| with only a few code changes to the
sequential implementation. We highlight that OpenACC provides an automatic, efficient, and portable approach to achieve
parallelization of 2D cardiac wave simulations on GPUs. Our approach of using OpenACC, OpenCL, and OpenMP to
parallelize this particular model on modern computational accelerators should be applicable to other computational models
of wave propagation in multi-dimensional media.
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Introduction

Recent developments in the field of high performance

computing have greatly expanded the computational capabilities

and application of Graphics Processing Units (GPUs). Using GPUs

to perform computations that are typically handled by a CPU is

known as General Purpose computation on GPUs (GPGPU). To

name a few, GPUs are now used in the fields of bioinformatics [1],

signal processing [2], astronomy [3], weather forecasting [4], and

molecular modeling [5]. In addition to GPUs, Intel’s new Many

Integrated Core (MIC) architecture also provides a powerful

parallel platform for complex computations. The Intel Xeon Phi is

the first accelerator based on the MIC architecture and is expected

to accelerate oil exploration, climate simulation, and financial

analyses, as well as other applications [6]. While new accelerators

promise improved computational performance, the use of software

tools (like CUDA programming language) to drive parallelism of

the accelerators requires expertise that is not widely available. In

addition, CUDA code will only run on NVIDIA GPUs, thereby

limiting its portability to other accelerators.

In this work, we sought to overcome the challenges of CUDA by

studying how to achieve both automated parallelization using

OpenACC (a directive based language extension similar to

OpenMP) and enhanced portability using OpenCL. We applied

our parallelization schemes using GPUs as well as Intel MIC-

architecture accelerator to reduce the run time of wave

propagation simulations. We used a well-established 2D cardiac

action potential model as a specific case-study.

Models of cardiac wave propagation often require a large

number of computations at each model node at each time step to

compute the value of numerous ionic currents at the node. A

computational approach that uses parallel processing on GPUs or

millions of cores provides a huge performance increase over any

sequential approach. For example, Neic et al accelerated cardiac

biodomain propagation simulations using a cluster of GPUs which

achieved up to 16:3| speedups over parallelized CPU imple-

mentations [7]. Mirin et al simulated thousands of heartbeats at a
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resolution of 0.1 mm using more than one million cores [8]. They

were also able to simulate human heart function over 1200 times

faster compared with any published results in the field [9]. Unlike

prior work that focused on either using one programming

language for parallelization on GPUs or multiple programming

models targeting CPUs [7–12], we studied multiple parallelization

approaches for running 2D cardiac wave propagation simulations.

We first used OpenACC to automatically generate CUDA and

OpenCL GPU code that runs on NVIDIA GPUs. In addition, we

developed CUDA and OpenCL implementations for paralleliza-

tion on NVIDIA GPUs, as well as an OpenMP implementation of

the same model for parallelization on Intel CPUs. In this way we

could compare the performance of different parallel computing

techniques. By altering the number of threads in the OpenMP

implementation, we were able to achieve good speedups on Intel

Xeon Phi accelerator.

The contributions of this paper are two fold: 1) We parallelized

a 2D cardiac wave propagation model using both manual and

automatic parallelization paradigms including CUDA, OpenCL,

and OpenACC. In particular, auto-parallelizing our model using

OpenACC is an excellent example of achieving parallelism in an

efficient and effective way. 2) We applied OpenCL, OpenACC,

and OpenMP to the problem of simulating cardiac wave

propagation so that parallelism from different architectures could

be explored. We found that this approach provided excellent

speedups of the model on GPUs and the Intel MIC-architecture

accelerator. Our results indicate that this is a very useful approach

for solving computational models of wave propagation in multi-

dimensional media using newly-available computational acceler-

ators.

Methods

High Performance Computing on GPUs
GPUs are massively parallel multi-threaded devices capable of

executing a large number of active threads concurrently. A GPU

consists of multiple streaming multiprocessors, each of which

contains multiple scalar processor cores. For example, NVIDIA’s

Fermi architecture GPU card Tesla C2050 contains 14 such

multiprocessors, each of which contains 32 cores, for a total of 448

cores. In addition, the GPU has several types of memory, most

notably the main device memory (global memory) and the on-chip

memory shared between all cores of a single multiprocessor

(shared memory).

GPUs achieve high-performance computing through the

massively parallel processing power of hundreds or even thousands

of compute cores. There are two popular programming schemes

for GPUs. The first is CUDA (Compute Unified Device

Architecture) [13], a parallel programming model that delivers

the high performance of NVIDIA’s graphics processor technology

to general purpose GPU computing. Applications written using

CUDA can run on a wide variety of NVIDIA GPUs. The second

is OpenCL (Open Computing Language) [14], a framework

similar to CUDA. Applications written in OpenCL can be

executed across heterogeneous platforms. Specifically, OpenCL

applications can run on AMD GPUs, NVIDIA GPUs, AMD

CPUs, Intel CPUs, and Intel coprocessors. Recent development of

directive-based GPU programming allows the programmer to

target GPU by simply placing pragmas in sequential code with the

compiler generating either CUDA or OpenCL code to realize

parallelism [15]. OpenACC [16] is such a directive-based GPU

programming tool that helps drive GPU parallelism.

Many Integrated Core Architecture
Intel MIC-architecture accelerator card is the most up-to-date

product from Intel. A MIC card usually contains 60 or 61 cores,

each core supports 4 hardware threads. One notable feature is that

it has 512-bit wide SIMD vectors which provides fine granularity

vectorization parallelism. A single instruction can operate on 8

adjacent double-precision floating point data or 16 single-precision

floating point data. Intel MIC accelerator achieves high-perfor-

mance computing through the hardware threads and the wide

vector registers. Comparing to GPUs, a whole application can

execute on the MIC accelerator. The programming languages for

MIC accelerator include OpenMP, OpenCL, and MPI. In this

work, we use OpenMP and OpenCL to exploit the parallelism of

one MIC card.

Cardiac Wave Propagation Model
Our goal was to study the computational speedups for

simulating cardiac electrical wave propagation that are provided

by multiple hardware platforms and several programming

schemes. We chose to work with a relatively straight-forward 2D

implementation of a well-known cardiac action potential model

(Beeler-Reuter). This model simplified porting the code between

hardware platforms and programming schemes. Although the

model is not as complex as models used in state-of-the-art

simulations [7,10], we used it as a case-study that could provide a

simplified, systematic approach for comparing modern parallel

programming tools. Our experience in parallelizing this model will

provide insights for others seeking to parallelize similar cardiac

models [17] and other propagation models, such as convection

and diffusion models [18,19], seismic wave propagation models

[20], and tumor growth and drug transport models [21].

In our cardiac wave model, cardiac tissue is modeled as a large

geometrical network of nodes that are electrically coupled. The

electrical potential of the cardiac cell membrane at each node is

represented as a set of partial differential equations (shown in

Equation 1).

Cm

LVm

Lt
~+:D+Vm{Iion ð1Þ

Transmembrane potential (Vm) at each node in a rectilinear 2D

grid (Nx:Ny) was computed using a continuum approach with no-

flux boundary conditions and finite difference integration [22,23].

Standard Euler time-stepping was used. Cardiac membrane ionic

current kinetics (Iion, mA=cm2) were computed using the

Drouhard-Roberge formulation of the inward sodium current

(INa) [24] and the Beeler-Reuter formulations of the slow inward

current (Is), time independent potassium current (IK1), and time-

activated outward current (Ix1) [25]. These currents are repre-

sented as complex ordinary differential equations. We simulated

functional wave reentry (one rotor), and rotor wave breakup with

subsequent fibrillatory wave activity. Figure 1 shows an example of

simulating reentrant activity with one rotor and Figure 2 shows

rotor breakup and fibrillatory activity. For wave reentry, the fiber

orientation was typically set at 33degrees; diffusion coefficient

along fibers was 0:00076cm2=ms and diffusion across fibers was

0:00038cm2=ms. For rotor breakup and fibrillatory wave activity,

the fiber orientation was set to 0degrees; diffusion coefficient along

fibers and across fibers were both 0:00055cm2=ms. All simulations

were checked for accuracy and numerical stability.

The general approach for solving the model is shown in

Figure 3. The differential equations were evaluated independently

at each grid node at each time step. Therefore, within each time
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step there is no data inter-dependency, which fits the modern

computational architectures quite well. There is potential for

programming tools that exploit data-level parallelism to provide

dramatic computational speedups.

GPU Implementations
As shown in Figure 3, the general algorithm loops through each

node in a 2D grid. Xstep is the coordinate of the X direction and

Ystep is the coordinate of the Y direction. Inside the loop, the

same set of functions is evaluated at each node. The temporal loop

is outside the nested spatial loops. Because of the sequential

structure of the program, total computational time is proportional

to the domain area, which means that large spatial domains

require significantly longer computational times.

Parallel implementations of N by N dimensional cardiac models

are relatively straightforward because once diffusion currents have

been computed there is no data dependency between neighboring

nodes for a particular timestep. Because of this, the differential

equations that represent myocyte electrophysiology (the brgates()

and brcurrents() functions) can be evaluated at each node, in

almost any sequence.

CUDA and OpenCL Implementations
We parallelized the cardiac model using CUDA and OpenCL.

In CUDA and OpenCL, multiple threads execute the same

instructions but the data processed by these threads might be on

different nodes. Take CUDA for example [13], a GPU device is

conceptualized as a grid containing a large number of equally-

shaped blocks, into which the threads are grouped. The

parameters of dimGrid and dimBlock define how the blocks

(threads) align in the grid (block). Each thread block in the grid

executes on a multiprocessor and threads in the block execute on

multiple cores inside the multiprocessor. The simulation input set

is a 2D grid containing Nx:Ny nodes (Nx columns and Ny rows of

nodes). We mapped one GPU thread to one node. To achieve

maximum parallelism, the optimal setting for block size must be

identified. As mentioned before, inside each GPU there are many

multiprocessors and each contains multiple cores. When the GPU

code is executing on a GPU, all of the blocks are evenly assigned to

the multiprocessors. If a multiprocessor contains 32 cores and a

block has 64 threads, the first 32 threads will be executed on these

32 cores first then the rest of the threads will be swept in. Assigning

large number of threads in one block may increase the occupancy

of a multiprocessor, thereby keeping all cores busy. On the other

hand, due to the limited resources like registers, shared memory,

etc. that are available in a GPU, a larger block may increase the

pressure on these resources. To find the best block size for our

model, we tested our code using various block sizes (i.e. different

BlockX and BlockY values) and node numbers (i.e. different Nx

and Ny values) on different GPUs. We found that the sweet spot

for our cardiac model is 128|1 for both CUDA and OpenCL

implementations running on both GPU cards.

The CUDA implementation of our cardiac model is computa-

tionally efficient and provides substantial speedups compared to a

Figure 1. Simulation of a single rotor. Top: an image showing cardiac electrical wave propagation as spatial fluctuations of transmembrane
potential. A single rotating wave (rotor) is shown. Bottom: action potentials at one node are shown as the temporal variation of transmembrane
potential at the node.
doi:10.1371/journal.pone.0086484.g001
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sequential CPU implementation. However, CUDA code can only

run on supported NVIDIA GPUs. To address this limitation we

developed the OpenCL version of the model to support GPU

parallelization across platforms. In this work, the OpenCL

implementation was tested on Intel MIC accelerator card in

addition to NVIDIA GPUs. The general architecture of our

OpenCL implementation is the same as the CUDA implementa-

tion. One thread was used to solve the equations at one node in

the model.

OpenACC Implementation
Since we have identified the hotspot of the sequential program,

we can add OpenACC directives to offload the code block to run

on accelerators like GPUs and coprocessors. Figure 4 shows the

code from Figure 3 with OpenACC pragmas.

In the code block with OpenACC pragmas, ‘‘#pragma acc

data’’ specify which data should be copied to the accelerator (using

‘‘copyin’’), to/from the accelerator (using ‘‘copy’’). The ‘‘#pragma

acc loop’’ specifies the loop that would be parallelized by

OpenACC. The ‘‘vector’’, ‘‘worker’’, and ‘‘gang’’ specifies the

Figure 2. Simulation of rotor breakup and fibrillatory activity. Top: an image of transmembrane potential showing complex wave activity.
Bottom: action potentials at one node are shown as the temporal variation of transmembrane potential at the node.
doi:10.1371/journal.pone.0086484.g002

Figure 3. The original algorithm.
doi:10.1371/journal.pone.0086484.g003
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thread configurations similar to block size and grid size in

OpenCL/CUDA. For example, Algorithm 2 shown in Figure 4 is

configured to have a grid size of 256 (gang) and a block size of

32|2 (vector,worker). Note bcs function needs to be executed in

serialized manner, thus the thread configuration specifies the

vector length, the number of workers, and the number of gangs to

be 1. The pragmas shown in Algorithm 2 are about all that were

needed to drive the generation of efficient parallel code.

OpenMP Implementation
We parallelized the CPU code using OpenMP [26] to provide

more perspectives in showing the speedups of parallel GPU

implementations. We have two versions of the OpenMP imple-

mentation with different number of threads configured for CPUs

and MIC accelerator respectively. Using OpenMP directive, we

can specify as many threads as the number of cores in a single

machine so that the best speedup results would be achieved (on

this single machine). For the OpenMP implementation running on

CPU, we only used one machine that contained 8 cores. In this

case we created 8 CPU threads and these threads divide among

themselves all the computations. With these multiple threads, one

of the spatial loops shown in Figure 3 could be parallelized. In the

case of MIC card, we created as many threads as the number of

hardware threads available. In exploiting the vectorization power

of MIC card, we performed loop unswitching optimization to the

OpenMP code. The optimization was used because the array

accesses involved step%2 in every statement of the computation

region. Loop unswitching could yield better vectorized code in this

case.

Results

In this section, we report the results of experiments with our

CUDA, OpenCL, and OpenACC GPU implementations. We also

report the results of comparing performances of the GPU

implementations with OpenMP implementation. In the end of

this section, we report the speedups from Intel MIC architecture

accelerator.

CUDA and OpenCL Implementations
Hardware. Our GPU implementations of the model were

tested on two different GPU cards: Fermi-architecture GPU card

Tesla C2050 and Kepler-architecture GPU card Tesla K20. In the

following sections, we refer to them as Fermi GPU and Kepler

GPU respectively. CPU-based implementations were also tested

on the machines that hosted each GPU card. The machines

hosting the Fermi GPU had 2 Intel E5530 2.4 GHz Quad Core

Nehalem processors (8 cores total) and 24 GB memory. The

machine hosting the Tesla K20 GPU card had 2 AMD Opteron

6320 2.8 GHz Eight Core processors (16 cores total) and 16 GB

memory.

The Fermi GPU had 14 multiprocessors, each with 32 cores

(448 cores total) clocked at 1.15 GHz and 3 GB global memory.

The Kepler GPU card had 13 multiprocessors, each multiproces-

sor containing 192 cores (2496 cores total) clocked at 706 MHz. It

had 4800 MB global memory. The peak double precision floating

point performance for Fermi GPU and and Kepler GPU was

515GFlops and 1.17TFlops respectively. These hardware config-

urations were also used for the experiments comparing with

OpenMP implementations.

Scalability and Performance. The computational perfor-

mance of the GPU implementations (running with the best block

size configuration 128|1) was studied by increasing the grid size

and measuring total run time on each hardware platform.

Simulations of reentrant activity (one rotor) and rotor breakup

and fibrillatory activity were studied. Our GPU implementation

accommodates large grid size for both simulations. We tested grid

sizes up to a maximum of 2048|2048. To ensure appropriate

comparisons, the same model parameters were used for simula-

tions running on CPUs and GPUs for each model. The CPU

results were obtained from running on the machine that hosted the

Fermi GPU.

For the single rotor simulations, we studied grid sizes ranging

from 256|256 to 2048|2048. A total time of 100 milliseconds

was simulated and dt was varying from 0:025 milliseconds to

0:003125 milliseconds, requiring from 4,000 to 32,000 steps for

simulations to finish. The number of nodes visited per second

ranged from 1024 to 655350. Square grids were used with an edge

size of 10cm.

Figure 5 shows the speedups provided by the Fermi GPU and

the Kepler GPU over the sequential CPU implementation. In the

figure, the X axis is the grid size from 256|256 to 2048|2048,

the Y axis is the relative speedup value, computed as CPU time/

GPU time. The four bars represent the combinations of runs:

Figure 4. The OpenACC version of the algorithm.
doi:10.1371/journal.pone.0086484.g004
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OpenCL implementation running on two GPUs and CUDA

implementation running on two GPUs.

For both CUDA and OpenCL GPU implementations, the

Fermi GPU provided speedups of at least 80| when running

large grid sizes, such as 1024|1024, and 2048|2048; the Kepler

GPU provided more than 220| speedups for 2048|2048 grid

size. For each GPU card we observed that larger grid sizes

provided larger speedups. Comparing the performance of the

Fermi GPU with that of the Kepler GPU, we could see Kepler

GPU was more than 2| faster than Fermi GPU. The increase of

the number of cores from 448 to 2496 and the improvement of

double-precision performance were among the factors contribut-

ing to the speedups. Since the Kepler results were obtained from

running exactly the same code that ran on the non-Kepler GPUs,

optimization might be applied specific to Kepler GPU for even

more speedups. Although the GPU kernel function were

equivalent for OpenCL implementation and CUDA implementa-

tion, OpenCL implementation was slightly faster than CUDA

implementation on the two GPUs. One reason is that our

OpenCL implementation predefined the total number of threads

to be one while executing a kernel function that needed to be

serialized; however, our CUDA implementation needed condi-

tional statement to allow only one thread to run that kernel

function which incurred overhead. Overall, both CUDA and

OpenCL GPU implementations provided very good speedups on

two different GPUs. It took the GPU implementations about 15
(or 30) minutes to finish the largest simulated grid size

(2048|2048) on Kepler GPU (or Fermi GPU) – the sequential

CPU implementation took more than 2 days. We noticed that

although we copied back from GPU to CPU the transmembrane

voltage values every constant timesteps (5 milliseconds of

simulation), the IO overhead was very insignificant, especially

for large grid size. So we excluded the IO time from the total

running time for GPU implementations. The transmembrane

voltage values for all nodes reside in GPU global memory. There is

no need to copy the voltage values back to CPU in every single

timestep. Fortunately, the GPUs we used contained enough global

memory to hold the voltage values for each node even for the

largest grid containing 2048|2048 nodes.

Rotor breakup simulations were used to study performance

during greater computational loads. In these tests we set the model

parameters to simulate the breakup of a single rotor into multiple

rotors, resulting in electrical activity that is much more complex

than that of a single rotor (shown in Figure 2). The computational

load for such simulations is typically higher because more nodes

are active per unit time. Despite the fact that the rotor breakup

simulation is much more complex, we observed similar significant

speedups from GPUs.

OpenACC Implementation
The hardware used to test OpenACC implementation is the

machine hosting the Kepler GPU. To compile OpenACC code,

we used HMPP 3.3.3 compiler from CAPS [27]. The compiler

transforms the OpenACC code to either CUDA or OpenCL code

as specified by the user.

The comparison of speedups between automatically generated

GPU code (CUDA/OpenCL) and hand-written GPU code

(CUDA/OpenCL) is shown in Figure 6. The tests were run on

Kepler GPU and the same reentrant activity as above was

simulated. We can see from the figure that OpenACC code

targeting CUDA and OpenCL achieved more than 150 times

speedup over sequential implementation with the largest input size

and over 100 times speedup with the second largest input size.

Although automatically generated GPU code did not achieve the

same speedup as hand-written GPU code, the amount of

modification to the original sequential code from OpenACC was

trivial and much less than the hand-written counterpart. We

believe OpenACC to be an efficient and effective way of exposing

parallelism of potential applications.

OpenMP Implementation
To provide more perspective for the speedups achieved by our

GPU implementation, we conducted additional tests with a

Figure 5. Speedups from running on the Fermi-architecture
Tesla C2050 GPU and the Kepler architecture Tesla K20 GPU
using OpenCL and CUDA for reentrant activity (one rotor)
simulation.
doi:10.1371/journal.pone.0086484.g005

Figure 6. Speedups of hand-written GPU code (Man_CUDA,
Man_OpenCL) over the sequential baseline vs. speedups of
OpenACC targeting CUDA and OpenCL (ACC_CUDA, ACC_O-
penCL) over the same baseline. All GPU codes were run on the
Kepler GPU.
doi:10.1371/journal.pone.0086484.g006
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parallel CPU implementation of the model using OpenMP. The

OpenMP implementation was run on the hardware platform that

hosted Fermi GPU and with the same reentrant activity (one rotor)

simulation input files. We achieved an average speedup of 7:15
over sequential CPU implementation using 8 CPU threads.

Figure 7 shows the speedup results over OpenMP for hand-

written CUDA and OpenCL implementations running on the

Fermi GPU and the Kepler GPU. All GPU implementations

provided more than 10 times speedup over the multi-core

OpenMP implementation running over large input size on Fermi

GPU. The speedup for both CUDA and OpenCL implementa-

tions increased quickly from about 12 times to more than 30 times

running on Kepler GPU with the increase of problem size. The

maximum speedup of 31 over OpenMP was achieved by running

OpenCL implementation on the Kepler GPU.

Implementations on MIC Architecture
We used Intel Xeon Phi 5110P coprocessor to test our hand-

written OpenCL code, automatically generated OpenCL code (by

OpenACC), and the OpenMP code written for Intel MIC

architecture. The coprocessor contains 60 cores and supports

240 threads. The memory of the coprocessor is 8 GB. The

machine hosting the coprocessor had 32 GB of memory and the

CPU is Intel Xeon E5 clocked at 2.63 GHz. As to software, we

used OpenCL 1.2 library (provided by Intel ICC compiler v14.0.0)

for OpenACC and OpenCL implementations. The compiler to

compile hand-written OpenCL code was GCC. We used the same

CAPS compiler as above to compile OpenACC code to generate

OpenCL code that runs on Intel MIC card. For OpenMP

implementation, we used ICC compiler versioned at 14.0.0 from

Intel.

Figure 8 shows the speedups achieved on MIC accelerator from

the three implementations. The OpenMP implementation was the

fastest of the three. It achieved more than 120| speedup for the

largest simulation size. For smaller simulation size like 512 and

1024, it achieved more than 100| speedup. The MIC OpenMP

implementation is vectorized with a factor of at least four because

if we disable the vectorization, the speedup becomes four times

less. The MIC OpenCL implementation remained identical to the

implementation tested on GPUs, thanks to its portability. It

provided decent speedups on MIC while offering such portability.

For the largest simulation size, more than 70| speedup was

achieved. As the OpenCL library improves, the speedup number

could get better. Different from the performance on GPUs,

OpenACC only provided a maximum of 35| speedup on MIC.

As it stands now, OpenMP is a better choice than OpenACC to

get good performance on MIC.

Discussion

In this section, we first summarize the optimizations applied to

different implementations. Then we compare different program-

ming languages with various metrics. In the end, we compare with

the related work and summarize this work.

Summary of Effective Optimizations for Different
Implementations

Although it was straightforward to port the cardiac model to run

on accelerators, optimizing the code was not trivial.

For CUDA and OpenCL implementations on GPU, we applied

two other effective optimizations before optimizing the block size.

N Eliminating atomic operations. A direct port of the sequential

code contained 9 equations that represent the updates (writes)

from a current node to the 8 neighboring nodes and itself.

Before optimization, atomic operations (in CUDA) and kernel

isolations (in OpenCL) were used to avoid racing updates.

Atomic operations are expensive and kernel isolations bring

synchronization overhead. To address this limitation, we came

up with a neighbor-update-free strategy. In this optimization

strategy, each node ‘‘collects’’ (reads) update requests from the

neighbors and performs the update to the node itself.

N Coalescing memory accesses. Coalesced memory accesses on

GPUs means the data requests (e.g. by 32 threads) consisting of

contiguous (e.g. 256 bytes for double) aligned memory space

could be fulfilled by one memory access. More than one

memory access will be needed otherwise. We achieved

Figure 7. Speedups on Fermi GPU (NVIDIA C2050) and Kepler
GPU (NVIDIA K20) over the 8 core OpenMP implementation.
Reentrant activity (one rotor) was simulated.
doi:10.1371/journal.pone.0086484.g007

Figure 8. Speedups on MIC-architecture Xeon Phi coprocessor
using hand-written OpenCL, OpenACC-generated OpenCL,
and OpenMP implementation over the sequential implemen-
tation. Reentrant activity (one rotor) was simulated.
doi:10.1371/journal.pone.0086484.g008
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coalesced memory access by changing Array of Structures

(AoS) to Structure of Arrays (SoA). Without coalesced memory

access, the speedup numbers would get cut by at least a half.

We obtained the OpenACC implementation from adding

pragmas to a sequential implementation that incorporated the

above two optimizations. Added with the optimization for gang,

worker, and vector configuration, we achieved good speedups

from OpenACC on GPUs.

For MIC OpenMP implementation, as aforementioned, we

applied loop unswitching optimization in addition to the above

optimizations so that the vectorization power of MIC card could

be better exploited. The loop unswitching strategy improved the

speedup results by approximately 40%.

For the sequential and OpenMP version that run on CPUs and

serve as the baselines, we passed O3 optimization flag to the

compiler so that the implementations were well optimized to be

strong baselines.

Parallel Programming Tools Comparison
In this section, we compare metrics like lines of source code

change to the original implementation, portability, time taken to

program, of the CUDA, OpenCL, OpenACC, and OpenMP

implementations. Table 1 shows the detailed ratings.

The Code-Change (second column) reports the estimated

number of lines of code change for the kernel computation

functions from the sequential C code. The ‘‘+’’ symbol after the

number means addition and ‘‘+/2’’ means additions and

deletions. There are about 220 lines of computation code in the

sequential CPU implementation. The CUDA and OpenCL

implementation needed to replace almost every statement of the

original CPU implementation. Plus, they needed to include GPU

initialization and data preparation code. The code change was

mostly addition and replacement of statements. The OpenACC

implementation only incurred about 10 statement additions to the

sequential code. The initialization of GPU, data initialization for

GPU, and data movement between GPU and CPU were all

automatically handled in the generated CUDA and/or OpenCL

code. The programmer only needed to figure out the correct

pragmas and associated pragma attributes to add. The OpenMP

implementation was also obtained by only placing a few pragmas

around the parallel code regions. Considering the difficulty of

programming using the languages (third column), CUDA and

OpenCL are about the same, they could take an experienced

programmer weeks to get the program correct and optimized for

GPUs. In our case, it took us months to get the well-tuned CUDA

version. In contrast, OpenACC and OpenMP program mostly

involved figuring out where to place the pragmas and what

parameters should go with these pragmas. It does not require the

programmer to be as experienced as for CUDA programming. It

took us less than a week to get the efficient OpenACC

implementation and the baseline OpenMP implementation. We

also compare the portability of these implementations (fourth

column). The CUDA implementation can only run on NVIDIA

GPUs while OpenCL can run across different architectures

include GPUs, CPUs and accelerators like Intel Xeon Phi

coprocessor. Since OpenACC implementation can be compiled

to OpenCL code, it can target the same architectures as OpenCL

can. The OpenMP program cannot run on GPUs, however, it can

run on CPUs and Intel’s Xeon Phi coprocessor (accelerator).

Combining the performance results and the above metrics, we

can see the OpenCL implementation achieved the best speedups

and portability on GPUs; the OpenACC implementation, taking

the minimum amount of effort to program, also achieved very

good speedups on GPUs and the same portability as OpenCL

implementation did. For Intel MIC architecture, the OpenMP

implementation was the performance champion. We attribute this

partially to the performance differences between the compilers and

the (OpenCL) libraries used to generate the executables.

Related Work
The first published simulation of 2D wave propagation in

cardiac arrhythmias model using GPU hardware was performed

on an Xbox 360 and resulted in a speedup of more than 20| for

specific model parameters [28]. Our work is the first to report the

simulation results of the 2D wave propagation using CUDA,

OpenCL, and OpenACC to manually ( CUDA/OpenCL) and

automatically (OpenACC) take advantage of the power of modern

computational accelerators like GPUs and Intel Xeon Phi

coprocessor. Wienke et al. were the first to report the experiences

with real-world applications using OpenACC [29]. Their Open-

ACC implementation achieved a fraction of 80% of the best

performance offered by OpenCL implementation for one appli-

cation and only 40% for a more complex medical program. As

shown in Figure 6, our OpenACC implementation could achieve

about 70% of the best hand-written CUDA/OpenCL implemen-

tation. In this work, we also showed that the OpenACC

implementation outperformed a non-optimized hand-written

OpenCL code on the Intel MIC accelerator (Figure 8). Hart et

al. first showed that OpenACC could be used in massively-parallel,

GPU-accelerated supercomputers [30].

Work that compared OpenACC, OpenCL, and CUDA include

the acceleration of hydrocodes [31] and the acceleration of

financial applications [15]. Our case study is focused on a different

codebase (2D wave propagation). While the work of accelerating

hydrocodes showed that OpenCL performed the worst, we

reported that the OpenCL implementation could achieve both

good performance and portability. Different from the work of

accelerating financial applications, we went a further step to

compare the performance of the OpenCL, OpenACC, and

OpenMP implementation on Intel MIC accelerator. There are

also a few work that focused on comparing the different

Table 1. Comparison of multiple metrics between different parallel programming implementations for the cardiac wave
propagation model.

Language Code-Change Estimated Time to Program Platforms

CUDA 500(+/2) Weeks NVIDIA GPUs

OpenCL 500(+/2) Weeks GPUs, CPUs, MIC accelerator

OpenACC 10(+) Days GPUs, CPUs, MIC accelerator

OpenMP 10(+) Days CPUs, MIC accelerator

doi:10.1371/journal.pone.0086484.t001
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implementations of the OpenACC directive-based language itself

[32,33]. Other than comparing the OpenACC related implemen-

tations, Oliveira et al. compared the CUDA, OpenCL, and

OpenGL implementations of the cardiac monodomain equations

[34]. In their work, the OpenCL implementation was slower than

the CUDA implementation. Our work showed that both the hand-

written OpenCL code and the OpenACC generated OpenCL

code can perform as good as or even better than CUDA code

while achieving portability.

Summary
This paper builds on our previous report [35], by presenting our

more efficient GPU implementations to dramatically improve the

scalability of our model for GPU architecture. More importantly,

we auto-parallelized the sequential code using OpenACC, the

speedup of which was impressive–as much as 150| faster than the

sequential version while the modification to the original sequential

program was minimum. We have also compared the performance

of parallel GPU computations with parallel CPU computations

(using OpenMP). Our GPU implementation was as much as

200| faster than the original sequential CPU code. The OpenMP

code achieved 7:15| speedups over the sequential CPU code on

average as displayed. Comparing with the OpenMP code, our

GPU implementation reached more than 30| speedups on the

Kepler GPU. We also tested with different implementations on

Intel MIC architecture accelerator where the OpenMP imple-

mentation achieved the best speedup of more than 120| and the

portable OpenCL implementation achieved more than 70|

speedup.

We conclude that emerging software developments like the

OpenACC directive-based programming language facilitate ex-

ploiting application parallelism offered by evolving hardware

architecture. Our method of using OpenACC, OpenCL, and

OpenMP to achieve efficient and effective parallelization on

different accelerators can be generally applied to benefit other

domains.

Supporting Information

Software S1 Software Package containing all the implementa-

tions.
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